Multilevel summation of electrostatic potentials using graphics processing units

نویسندگان

  • David J. Hardy
  • John E. Stone
  • Klaus Schulten
چکیده

Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of "weights" over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Multi-GPU Simulation of Long-Range Molecular Dynamics

Molecular dynamics simulations allow us to study the behavior of complex biomolecular systems by modeling the pairwise interaction forces between all atoms. Molecular systems are subject to slowly decaying electrostatic potentials, which turn molecular dynamics into an n-body problem. In this paper, we present a parallel and scalable solution to compute long-range molecular forces, based on the...

متن کامل

Accelerating molecular modeling applications with graphics processors

Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general...

متن کامل

Multilevel Summation for the Fast Evaluation of Forces for the Simulation of Biomolecules by David

The multilevel summation method computes an approximation to the pairwise electrostatic interaction potential and respective forces. The scalar potential is smoothly split into a short-range part computed exactly and a slowly varying long-range part approximated from a hierarchy of grids. Multilevel summation is especially appropriate for the dynamical simulation of biomolecules, because it com...

متن کامل

Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units

In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...

متن کامل

Scalable On-Board Multi-GPU Simulation of Long-Range Molecular Dynamics

Molecular dynamics simulations allow us to study the behavior of complex biomolecular systems by modeling the pairwise interaction forces between all atoms. Molecular systems are subject to slowly decaying electrostatic potentials, which turn molecular dynamics into an n-body problem. In this paper, we present a parallel and scalable solution to compute long-range molecular forces, based on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Parallel computing

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2009